The Hilbert Polynomial of the Irreducible Representation of the Rational Cherednik Algebra of Type A_{n} in Characteristic $p \nmid n$

Merrick Cai
Mentor: Daniil Kalinov, MIT
Kings Park High School

May 19-20, 2018
MIT PRIMES Conference

Vector Space

A vector space defined over a field \mathbb{k}, is a collection of vectors, which may be multiplied by scalars $\lambda \in \mathbb{k}$, and added together.

Vector Space

A vector space defined over a field \mathbb{k}, is a collection of vectors, which may be multiplied by scalars $\lambda \in \mathbb{k}$, and added together.

- \mathbb{k}^{n}
- $\mathbb{k}\left[x_{1}, x_{2}, \ldots, x_{n}\right]$
- $\mathbb{k}\left[\left[x_{1}, x_{2}, \ldots, x_{n}\right]\right]$
- $\mathbb{k}\left[\partial_{x}, x\right]$
- $\operatorname{Mat}_{n}(\mathbb{k})$

Algebra

An algebra is a vector space V equipped with a bilinear product; i.e., the vectors can be multiplied while preserving linearity.

Algebra

An algebra is a vector space V equipped with a bilinear product; i.e., the vectors can be multiplied while preserving linearity.

- $\mathbb{k}\left[x_{1}, \ldots, x_{n}\right]$
- $\mathbb{k}\left[\left[x_{1}, \ldots, x_{n}\right]\right]$
- $\mathbb{k}\left[x_{1}, x_{2}, \ldots, x_{n}, \partial_{x_{1}}, \partial_{x_{2}}, \ldots, \partial_{x_{n}}\right]$
- $\operatorname{Mat}_{n}(\mathbb{k})$

Graded Algebra

An algebra A is graded if $A=\bigoplus_{n \geq 0} A_{n}$ for subspaces A_{n} and $A_{i} A_{j} \subset A_{i+j}$.

Graded Algebra

An algebra A is graded if $A=\bigoplus_{n \geq 0} A_{n}$ for subspaces A_{n} and $A_{i} A_{j} \subset A_{i+j}$.

Example

The algebra $A=\mathbb{k}\left[x_{1}, x_{2}, \ldots, x_{n}\right]$ has a grading given by A_{i} the subspace of homogeneous degree i polynomials.

Hilbert Series

The Hilbert series of a graded algebra A is given by

$$
h(z)=\sum_{n \geq 0} \operatorname{dim}\left(A_{n}\right) z^{n}
$$

Hilbert Series

The Hilbert series of a graded algebra A is given by

$$
h(z)=\sum_{n \geq 0} \operatorname{dim}\left(A_{n}\right) z^{n}
$$

Example

The algebra $A=\mathbb{k}\left[x_{1}, \ldots, x_{n}\right]$ has the usual grading by degree. Then $\operatorname{dim}\left(A_{i}\right)=\binom{n+i-1}{i}$, so $h_{A}(z)=\sum_{i \geq 0}\binom{n+i-1}{i} z^{i}=\frac{1}{(1-z)^{n}}$.

Representation

A representation of an algebra A is a vector space V equipped with a homomorphism $\rho: A \rightarrow \operatorname{End}(V)$.

Representation

A representation of an algebra A is a vector space V equipped with a homomorphism $\rho: A \rightarrow \operatorname{End}(V)$.

Example

Take $V=\mathbb{C}^{n}$ and $G=S_{n}$. Then the group algebra $\mathbb{k}\left[S_{n}\right]$ acts on $v \in V$ by permuting the indices; e.g., [(123)] $(x, y, z)=(z, x, y)$.

Representation

A representation of an algebra A is a vector space V equipped with a homomorphism $\rho: A \rightarrow \operatorname{End}(V)$.

Example

Take $V=\mathbb{C}^{n}$ and $G=S_{n}$. Then the group algebra $\mathbb{k}\left[S_{n}\right]$ acts on $v \in V$ by permuting the indices; e.g., $[(123)](x, y, z)=(z, x, y)$.

A subrepresentation is a subspace $W \subset V$ which remains closed under the action of $\rho(A)$.

Irreducible Representation

A representation (A, V) is irreducible if there does not exist any (proper) subspace $W \subset V$ which is closed under the action of A.

Irreducible Representation

A representation (A, V) is irreducible if there does not exist any (proper) subspace $W \subset V$ which is closed under the action of A.

Example

Let $A=\mathbb{k}\left[S_{n}\right]$ be the group algebra of S_{n} and $V=\mathbb{C}^{n}$ be a vector space where S_{n} acts by permutations. Then $\operatorname{Span}\{(1,1,1, \ldots, 1)\}$ is an irreducible subrepresentation.

Differential Operators

Let $V=\mathbb{k}[x]$. The differential operator acts by $\partial_{x} x^{k}=k x^{k-1}$. In characteristic 0 we can define the algebra of differential operators as a subalgebra in $\operatorname{End}(k[x])$ generated by x and ∂_{x}.

Differential Operators

Let $V=\mathbb{k}[x]$. The differential operator acts by $\partial_{x} x^{k}=k x^{k-1}$. In characteristic 0 we can define the algebra of differential operators as a subalgebra in $\operatorname{End}(k[x])$ generated by x and ∂_{x}.

But in characteristic p, ∂_{x}^{p} acts by 0 , this is problematic. So to define $k\left[x, \partial_{x}\right]$, use the fact that $\left[\partial_{x}, x\right]=1$. So $k\left[x, \partial_{x}\right]=\mathbb{k}\langle x, y\rangle /([y, x]=1)$.

Rational Cherednik Algebra of Type A_{n}

The Cherednik algebra $H_{t, c}(n)$ in characteristic 0 is generated by the following in $\operatorname{End}\left(\mathbb{k}\left[x_{1}, \ldots, x_{n}\right] /\left(x_{1}+\cdots+x_{n}\right)\right)$:

Rational Cherednik Algebra of Type A_{n}

The Cherednik algebra $H_{t, c}(n)$ in characteristic 0 is generated by the following in $\operatorname{End}\left(\mathbb{k}\left[x_{1}, \ldots, x_{n}\right] /\left(x_{1}+\cdots+x_{n}\right)\right)$:

- Polynomials in $\mathbb{k}\left[x_{1}, \ldots, x_{n}\right]$
- Acts by multiplication

Rational Cherednik Algebra of Type A_{n}

The Cherednik algebra $H_{t, c}(n)$ in characteristic 0 is generated by the following in $\operatorname{End}\left(\mathbb{k}\left[x_{1}, \ldots, x_{n}\right] /\left(x_{1}+\cdots+x_{n}\right)\right)$:

- Polynomials in $\mathbb{k}\left[x_{1}, \ldots, x_{n}\right]$
- Acts by multiplication
- Elements of S_{n}
- Acts by permuting the x_{i} 's

Rational Cherednik Algebra of Type A_{n}

The Cherednik algebra $H_{t, c}(n)$ in characteristic 0 is generated by the following in $\operatorname{End}\left(\mathbb{k}\left[x_{1}, \ldots, x_{n}\right] /\left(x_{1}+\cdots+x_{n}\right)\right)$:

- Polynomials in $\mathbb{k}\left[x_{1}, \ldots, x_{n}\right]$
- Acts by multiplication
- Elements of S_{n}
- Acts by permuting the x_{i} 's
- The Dunkl operators $D_{y_{i}}$
- An extension of the partial derivative
- $D_{y_{i}}=t \partial_{x_{i}}-c \sum_{k \neq i} \frac{1-\sigma_{i k}}{x_{i}-x_{k}}$
- $\left[D_{y_{i}}, D_{y_{j}}\right]=0$

Rational Cherednik Algebra of Type A_{n}

The Cherednik algebra $H_{t, c}(n)$ in characteristic 0 is generated by the following in $\operatorname{End}\left(\mathbb{k}\left[x_{1}, \ldots, x_{n}\right] /\left(x_{1}+\cdots+x_{n}\right)\right)$:

- Polynomials in $\mathbb{k}\left[x_{1}, \ldots, x_{n}\right]$
- Acts by multiplication
- Elements of S_{n}
- Acts by permuting the x_{i} 's
- The Dunkl operators $D_{y_{i}}$
- An extension of the partial derivative
- $D_{y_{i}}=t \partial_{x_{i}}-c \sum_{k \neq i} \frac{1-\sigma_{i k}}{x_{i}-x_{k}}$
- $\left[D_{y_{i}}, D_{y_{j}}\right]=0$

The relevant cases are $t=1$ and $t=0$. We will work with $t=0$. We need more abstract definition for characteristic p as for differential operators.

Dunkl Operators

The Dunkl operator can be described by $D_{y_{i}}=t \partial_{x_{i}}-c \sum_{k \neq i} \frac{1-\sigma_{i k}}{x_{i}-x_{k}}$.

Dunkl Operators

The Dunkl operator can be described by $D_{y_{i}}=t \partial_{x_{i}}-c \sum_{k \neq i} \frac{1-\sigma_{i k}}{x_{i}-x_{k}}$. For $t=1$, an example of $D_{y_{1}}\left(x_{1} x_{2}^{2} x_{3}^{3}\right)$:

Dunkl Operators

The Dunkl operator can be described by $D_{y_{i}}=t \partial_{x_{i}}-c \sum_{k \neq i} \frac{1-\sigma_{i k}}{x_{i}-x_{k}}$.
For $t=1$, an example of $D_{y_{1}}\left(x_{1} x_{2}^{2} x_{3}^{3}\right)$:

- $1 \partial_{x_{1}}\left(x_{1} x_{2}^{2} x_{3}^{3}\right)=x_{2}^{2} x_{3}^{3}$

Dunkl Operators

The Dunkl operator can be described by $D_{y_{i}}=t \partial_{x_{i}}-c \sum_{k \neq i} \frac{1-\sigma_{i k}}{x_{i}-x_{k}}$.
For $t=1$, an example of $D_{y_{1}}\left(x_{1} x_{2}^{2} x_{3}^{3}\right)$:

- $1 \partial_{x_{1}}\left(x_{1} x_{2}^{2} x_{3}^{3}\right)=x_{2}^{2} x_{3}^{3}$
- $\frac{1-\sigma_{12}}{x_{1}-x_{2}}\left(x_{1} x_{2}^{2} x_{3}^{3}\right)=x_{3}^{3}\left(\frac{x_{1} x_{2}^{2}-x_{1}^{2} x_{2}}{x_{1}-x_{2}}\right)=-x_{1} x_{2} x_{3}^{3}$

Dunkl Operators

The Dunkl operator can be described by $D_{y_{i}}=t \partial_{x_{i}}-c \sum_{k \neq i} \frac{1-\sigma_{i k}}{x_{i}-x_{k}}$.
For $t=1$, an example of $D_{y_{1}}\left(x_{1} x_{2}^{2} x_{3}^{3}\right)$:

- $1 \partial_{x_{1}}\left(x_{1} x_{2}^{2} x_{3}^{3}\right)=x_{2}^{2} x_{3}^{3}$
- $\frac{1-\sigma_{12}}{x_{1}-x_{2}}\left(x_{1} x_{2}^{2} x_{3}^{3}\right)=x_{3}^{3}\left(\frac{x_{1} x_{2}^{2}-x_{1}^{2} x_{2}}{x_{1}-x_{2}}\right)=-x_{1} x_{2} x_{3}^{3}$
- $\frac{1-\sigma_{13}}{x_{1}-x_{3}}\left(x_{1} x_{2}^{2} x_{3}^{3}\right)=x_{2}^{2}\left(\frac{x_{1} x_{3}^{3}-x_{1}^{3} x_{3}}{x_{1}-x_{3}}\right)=-x_{1}^{2} x_{2}^{2} x_{3}-x_{1} x_{2}^{2} x_{3}^{2}$

Dunkl Operators

The Dunkl operator can be described by $D_{y_{i}}=t \partial_{x_{i}}-c \sum_{k \neq i} \frac{1-\sigma_{i k}}{x_{i}-x_{k}}$.
For $t=1$, an example of $D_{y_{1}}\left(x_{1} x_{2}^{2} x_{3}^{3}\right)$:

- $1 \partial_{x_{1}}\left(x_{1} x_{2}^{2} x_{3}^{3}\right)=x_{2}^{2} x_{3}^{3}$
- $\frac{1-\sigma_{12}}{x_{1}-x_{2}}\left(x_{1} x_{2}^{2} x_{3}^{3}\right)=x_{3}^{3}\left(\frac{x_{1} x_{2}^{2}-x_{1}^{2} x_{2}}{x_{1}-x_{2}}\right)=-x_{1} x_{2} x_{3}^{3}$
- $\frac{1-\sigma_{13}}{x_{1}-x_{3}}\left(x_{1} x_{2}^{2} x_{3}^{3}\right)=x_{2}^{2}\left(\frac{x_{1} x_{3}^{3}-x_{1}^{3} x_{3}}{x_{1}-x_{3}}\right)=-x_{1}^{2} x_{2}^{2} x_{3}-x_{1} x_{2}^{2} x_{3}^{2}$
- For $k>3$, then $\frac{1-\sigma_{1 k}}{x_{1}-x_{k}}\left(x_{1} x_{2}^{2} x_{3}^{3}\right)=x_{2}^{2} x_{3}^{3}$

Dunkl Operators

The Dunkl operator can be described by $D_{y_{i}}=t \partial_{x_{i}}-c \sum_{k \neq i} \frac{1-\sigma_{i k}}{x_{i}-x_{k}}$.
For $t=1$, an example of $D_{y_{1}}\left(x_{1} x_{2}^{2} x_{3}^{3}\right)$:

- $1 \partial_{x_{1}}\left(x_{1} x_{2}^{2} x_{3}^{3}\right)=x_{2}^{2} x_{3}^{3}$
- $\frac{1-\sigma_{12}}{x_{1}-x_{2}}\left(x_{1} x_{2}^{2} x_{3}^{3}\right)=x_{3}^{3}\left(\frac{x_{1} x_{2}^{2}-x_{1}^{2} x_{2}}{x_{1}-x_{2}}\right)=-x_{1} x_{2} x_{3}^{3}$
- $\frac{1-\sigma_{13}}{x_{1}-x_{3}}\left(x_{1} x_{2}^{2} x_{3}^{3}\right)=x_{2}^{2}\left(\frac{x_{1} x_{3}^{3}-x_{1}^{3} x_{3}}{x_{1}-x_{3}}\right)=-x_{1}^{2} x_{2}^{2} x_{3}-x_{1} x_{2}^{2} x_{3}^{2}$
- For $k>3$, then $\frac{1-\sigma_{1 k}}{x_{1}-x_{k}}\left(x_{1} x_{2}^{2} x_{3}^{3}\right)=x_{2}^{2} x_{3}^{3}$
- $D_{y_{1}}\left(x_{1} x_{2}^{2} x_{3}^{3}\right)=\partial_{x_{1}}\left(x_{1} x_{2}^{2} x_{3}^{3}\right)-\sum_{k \neq 1} \frac{1-\sigma_{1 k}}{x_{1}-x_{k}}\left(x_{1} x_{2}^{2} x_{3}^{3}\right)=$ $x_{2}^{2} x_{3}^{3}+c\left(x_{1} x_{2} x_{3}^{3}+x_{1}^{2} x_{2}^{2} x_{3}+x_{1} x_{2}^{2} x_{3}^{2}-(n-3) x_{2}^{2} x_{3}^{3}\right)$

Dunkl Operators

The Dunkl operator can be described by $D_{y_{i}}=t \partial_{x_{i}}-c \sum_{k \neq i} \frac{1-\sigma_{i k}}{x_{i}-x_{k}}$.
For $t=1$, an example of $D_{y_{1}}\left(x_{1} x_{2}^{2} x_{3}^{3}\right)$:

- $1 \partial_{x_{1}}\left(x_{1} x_{2}^{2} x_{3}^{3}\right)=x_{2}^{2} x_{3}^{3}$
- $\frac{1-\sigma_{12}}{x_{1}-x_{2}}\left(x_{1} x_{2}^{2} x_{3}^{3}\right)=x_{3}^{3}\left(\frac{x_{1} x_{2}^{2}-x_{1}^{2} x_{2}}{x_{1}-x_{2}}\right)=-x_{1} x_{2} x_{3}^{3}$
- $\frac{1-\sigma_{13}}{x_{1}-x_{3}}\left(x_{1} x_{2}^{2} x_{3}^{3}\right)=x_{2}^{2}\left(\frac{x_{1} x_{3}^{3}-x_{1}^{3} x_{3}}{x_{1}-x_{3}}\right)=-x_{1}^{2} x_{2}^{2} x_{3}-x_{1} x_{2}^{2} x_{3}^{2}$
- For $k>3$, then $\frac{1-\sigma_{1 k}}{x_{1}-x_{k}}\left(x_{1} x_{2}^{2} x_{3}^{3}\right)=x_{2}^{2} x_{3}^{3}$
- $D_{y_{1}}\left(x_{1} x_{2}^{2} x_{3}^{3}\right)=\partial_{x_{1}}\left(x_{1} x_{2}^{2} x_{3}^{3}\right)-\sum_{k \neq 1} \frac{1-\sigma_{1 k}}{x_{1}-x_{k}}\left(x_{1} x_{2}^{2} x_{3}^{3}\right)=$ $x_{2}^{2} x_{3}^{3}+c\left(x_{1} x_{2} x_{3}^{3}+x_{1}^{2} x_{2}^{2} x_{3}+x_{1} x_{2}^{2} x_{3}^{2}-(n-3) x_{2}^{2} x_{3}^{3}\right)$
The singular polynomials are those which are in the kernel of all Dunkl operators $D_{y_{i}-y_{j}}$ for all i, j.

Baby Verma Modules

- By $M_{t, c}$ denote the Verma module $\mathbb{k}\left[x_{1}, \ldots, x_{n}\right] /\left(x_{1}+\cdots+x_{n}\right)$ with a standard structure of $H_{t, c}(n)$ representation

Baby Verma Modules

- By $M_{t, c}$ denote the Verma module $\mathbb{k}\left[x_{1}, \ldots, x_{n}\right] /\left(x_{1}+\cdots+x_{n}\right)$ with a standard structure of $H_{t, c}(n)$ representation
- Ideal of symmetric polynomials is a subrepresentation

Baby Verma Modules

- By $M_{t, c}$ denote the Verma module $\mathbb{k}\left[x_{1}, \ldots, x_{n}\right] /\left(x_{1}+\cdots+x_{n}\right)$ with a standard structure of $H_{t, c}(n)$ representation
- Ideal of symmetric polynomials is a subrepresentation
- Denote by $N_{t, c}$ the quotient by this subrepresentation, which is the baby Verma module

Contravariant form

The contravariant form $B: S \mathfrak{h} \otimes$ hh $^{*} \rightarrow \mathbb{k}$ is defined by $B(1,1)=1$ and for $y \in \mathfrak{h}, x \in \mathfrak{h}^{*}, g \in S \mathfrak{h}, f \in S \mathfrak{h}^{*}$, then $B(y g, f)=B\left(g, D_{y}(f)\right)$ and $B(g, x f)=B\left(D_{x}(g), f\right)$. The kernel of B is given by $x \in S \mathfrak{h}^{*}$ such that for all $y \in S \mathfrak{h}$, then $B(y, x)=0$.

Contravariant form

The contravariant form $B: S \mathfrak{h} \otimes \mathfrak{S h}^{*} \rightarrow \mathbb{k}$ is defined by $B(1,1)=1$ and for $y \in \mathfrak{h}, x \in \mathfrak{h}^{*}, g \in S \mathfrak{h}, f \in S \mathfrak{h}^{*}$, then $B(y g, f)=B\left(g, D_{y}(f)\right)$ and $B(g, x f)=B\left(D_{x}(g), f\right)$. The kernel of B is given by $x \in S \mathfrak{h}^{*}$ such that for all $y \in S \mathfrak{h}$, then $B(y, x)=0$.

- The kernel is a subrepresentation
- Define $L_{t, c}=M_{t, c} / \operatorname{ker} B$
- $L_{t, c}=N_{t, c} / \operatorname{ker} B$
- L is an irreducible representation of $H_{t, c}$

To find the Hilbert polynomial of the irreducible quotient $L_{t, c}$ in the polynomial representation of the rational Cherednik algebra of type A_{n}, when the characteristic $p \nmid n$.

The singular polynomials generate a subrepresentation so we would like to find them and remove them.

Goal

To find the smallest d such that degree d polynomials in the simultaneous kernel of the Dunkl operators $D_{y_{i}-y_{j}}$ exist, and find the dimension of this kernel.

Past Results: Balagovic/Chen

Balagovic and Chen showed that if no singular polynomials existed, the Hilbert polynomial of $N_{t, c}(\tau)$ is as follows:

Past Results: Balagovic/Chen

Balagovic and Chen showed that if no singular polynomials existed, the Hilbert polynomial of $N_{t, c}(\tau)$ is as follows:

$$
t=1 \Longrightarrow h_{N_{1, c}(\tau)}(z)=\frac{\left(1-z^{2 p}\right)\left(1-z^{3 p}\right) \cdots\left(1-z^{n p}\right)}{(1-z)^{n-1}}
$$

Past Results: Balagovic/Chen

Balagovic and Chen showed that if no singular polynomials existed, the Hilbert polynomial of $N_{t, c}(\tau)$ is as follows:

$$
\begin{gathered}
t=1 \Longrightarrow h_{N_{1, c}(\tau)}(z)=\frac{\left(1-z^{2 p}\right)\left(1-z^{3 p}\right) \cdots\left(1-z^{n p}\right)}{(1-z)^{n-1}}, \\
t=0 \Longrightarrow h_{N_{0, c}(\tau)}(z)=\frac{\left(1-z^{2}\right)\left(1-z^{3}\right) \cdots\left(1-z^{n}\right)}{(1-z)^{n-1}}
\end{gathered}
$$

Past Results: Balagovic/Chen

Balagovic and Chen showed that if no singular polynomials existed, the Hilbert polynomial of $N_{t, c}(\tau)$ is as follows:

$$
\begin{gathered}
t=1 \Longrightarrow h_{N_{1, c}(\tau)}(z)=\frac{\left(1-z^{2 p}\right)\left(1-z^{3 p}\right) \cdots\left(1-z^{n p}\right)}{(1-z)^{n-1}}, \\
t=0 \Longrightarrow h_{N_{0, c}(\tau)}(z)=\frac{\left(1-z^{2}\right)\left(1-z^{3}\right) \cdots\left(1-z^{n}\right)}{(1-z)^{n-1}}
\end{gathered}
$$

They showed that

$$
h_{L_{t, c}(\tau)}(z)=\left(\frac{1-z^{p}}{1-z}\right)^{n-1} h\left(z^{p}\right)
$$

for some polynomial h with integer coefficients.

Past Results: Balagovic/Chen

Balagovic and Chen showed that if no singular polynomials existed, the Hilbert polynomial of $N_{t, c}(\tau)$ is as follows:

$$
\begin{gathered}
t=1 \Longrightarrow h_{N_{1, c}(\tau)}(z)=\frac{\left(1-z^{2 p}\right)\left(1-z^{3 p}\right) \cdots\left(1-z^{n p}\right)}{(1-z)^{n-1}}, \\
t=0 \Longrightarrow h_{N_{0, c}(\tau)}(z)=\frac{\left(1-z^{2}\right)\left(1-z^{3}\right) \cdots\left(1-z^{n}\right)}{(1-z)^{n-1}}
\end{gathered}
$$

They showed that

$$
h_{L_{t, c}(\tau)}(z)=\left(\frac{1-z^{p}}{1-z}\right)^{n-1} h\left(z^{p}\right)
$$

for some polynomial h with integer coefficients.

They also proved that $\operatorname{ker} B$ is a maximal proper submodule of the Verma module $M_{t, c}(\tau)$, and that $L_{t, c}(\tau)$ is irreducible.

Methods

- We wrote a program in Sage to compute the dimensions of the subspaces for various p, n in $L_{t, c}$

Methods

- We wrote a program in Sage to compute the dimensions of the subspaces for various p, n in $L_{t, c}$
- We compared the dimension to those predicted by Balagovic/Chen for $N_{t, c}$ to find existence of singular polynomials

Methods

- We wrote a program in Sage to compute the dimensions of the subspaces for various p, n in $L_{t, c}$
- We compared the dimension to those predicted by Balagovic/Chen for $N_{t, c}$ to find existence of singular polynomials
- We computed these singular polynomials

Methods

- We wrote a program in Sage to compute the dimensions of the subspaces for various p, n in $L_{t, c}$
- We compared the dimension to those predicted by Balagovic/Chen for $N_{t, c}$ to find existence of singular polynomials
- We computed these singular polynomials
- We conjectured a pattern and looked to prove it

Current Progress for $t=0$

For $p \mid n$:

- The singular polynomials are x_{i} for $i=1,2, \ldots, n$
- The Hilbert polynomial is 1

Current Progress for $t=0$

For $p \mid n$:

- The singular polynomials are x_{i} for $i=1,2, \ldots, n$
- The Hilbert polynomial is 1

The case $t=1$ and $p \mid n$ was done by Devadas and Sun.

Progress for $p=2$ and $t=0$

For $p=2$, the following polynomials are singular for distinct i, j, k :

- $x_{i}^{2}+x_{i} x_{j}+x_{j}^{2}$
- $x_{i} x_{j}+x_{j} x_{k}+x_{k} x_{i}$

Progress for $p \mid n-1$ and $t=0$

For p odd and distinct i, j, k, l, the following polynomials are singular:

- $\left(x_{j}+x_{k}\right)\left(x_{i}-x_{j}-x_{k}\right)$
- $\left(x_{i}-x_{j}\right)\left(x_{k}-x_{l}\right)$

Conjectures

- The Hilbert polynomial for $p=2$ and $t=0$ is $h_{L_{0, c}}(z)=1+(n-1) z+(n-1) z^{2}+z^{3}$
- Etingof conjectures that for $n=k p+r$, then $h_{L_{0, c}}(z)=[r]_{z}![p]_{z} Q_{r}(n, z)$ and $\left.h_{L_{1, c}}(z)=[r]_{z^{p}!}!p\right]_{z^{p}}[p]_{z}^{n-1} Q_{r}\left(n, z^{p}\right)$, for $Q_{r}(n, z)=\binom{n-1}{r-1} z^{r+1}+\sum_{i=0}^{r}\binom{n-r-2+i}{i} z^{i}$, $[k]_{z}!=[k]_{z}[k-1]_{z} \cdots[1]_{z}$, and $[w]_{z}=\frac{1-z^{w}}{1-z}$

In the future, we would like to find the Hilbert polynomials for $L_{t, c}$, and the singular polynomials for various p, n. We would like to study more cases in $t=0$ and prove irreducibility, then consider the connection between $t=0$ and $t=1$.

Acknowledgements

would like to thank:

- My parents
- My mentor, Daniil Kalinov
- Dr. Pavel Etingof
- Dr. Tanya Khovanova
- The MIT Math Department
- The MIT PRIMES program
- Sheela Devadas, Yi Sun, Martina Balagovic, Harrison Chen

