The Hilbert Polynomial of the Irreducible Representation of the Rational Cherednik Algebra of Type A_n in Characteristic $p \nmid n$

Merrick Cai Mentor: Daniil Kalinov, MIT

Kings Park High School

May 19-20, 2018 MIT PRIMES Conference A vector space defined over a field \Bbbk , is a collection of vectors, which may be multiplied by scalars $\lambda \in \Bbbk$, and added together.

A vector space defined over a field \Bbbk , is a collection of vectors, which may be multiplied by scalars $\lambda \in \Bbbk$, and added together.

- kⁿ
- $\Bbbk[x_1, x_2, \ldots, x_n]$
- $\&[[x_1, x_2, ..., x_n]]$
- $\mathbb{k}[\partial_x, x]$
- $Mat_n(\Bbbk)$

An algebra is a vector space V equipped with a bilinear product; i.e., the vectors can be multiplied while preserving linearity.

An algebra is a vector space V equipped with a bilinear product; i.e., the vectors can be multiplied while preserving linearity.

- $\Bbbk[x_1, \ldots, x_n]$
- $\mathbb{k}[[x_1,\ldots,x_n]]$
- $\Bbbk[x_1, x_2, \ldots, x_n, \partial_{x_1}, \partial_{x_2}, \ldots, \partial_{x_n}]$
- $Mat_n(k)$

An algebra A is graded if $A = \bigoplus_{n \ge 0} A_n$ for subspaces A_n and $A_i A_j \subset A_{i+j}$.

回 と く ヨ と く ヨ と

3

An algebra A is graded if $A = \bigoplus_{n \ge 0} A_n$ for subspaces A_n and $A_i A_j \subset A_{i+j}$.

Example

The algebra $A = \mathbb{k}[x_1, x_2, \dots, x_n]$ has a grading given by A_i the subspace of homogeneous degree *i* polynomials.

The Hilbert series of a graded algebra A is given by

$$h(z) = \sum_{n \ge 0} \dim(A_n) z^n.$$

同 ト イ ヨ ト イ ヨ ト

The Hilbert series of a graded algebra A is given by

$$h(z)=\sum_{n\geq 0}\dim(A_n)z^n.$$

Example

The algebra $A = \Bbbk[x_1, \ldots, x_n]$ has the usual grading by degree. Then dim $(A_i) = \binom{n+i-1}{i}$, so $h_A(z) = \sum_{i \ge 0} \binom{n+i-1}{i} z^i = \frac{1}{(1-z)^n}$. A representation of an algebra A is a vector space V equipped with a homomorphism $\rho: A \to End(V)$.

A B + A B +

A representation of an algebra A is a vector space V equipped with a homomorphism $\rho: A \to End(V)$.

Example

Take $V = \mathbb{C}^n$ and $G = S_n$. Then the group algebra $\Bbbk[S_n]$ acts on $v \in V$ by permuting the indices; e.g., [(123)](x, y, z) = (z, x, y).

伺 ト イ ヨ ト イ ヨ ト

A representation of an algebra A is a vector space V equipped with a homomorphism $\rho: A \to End(V)$.

Example

Take $V = \mathbb{C}^n$ and $G = S_n$. Then the group algebra $\Bbbk[S_n]$ acts on $v \in V$ by permuting the indices; e.g., [(123)](x, y, z) = (z, x, y).

A subrepresentation is a subspace $W \subset V$ which remains closed under the action of $\rho(A)$.

A representation (A, V) is irreducible if there does not exist any (proper) subspace $W \subset V$ which is closed under the action of A.

A representation (A, V) is irreducible if there does not exist any (proper) subspace $W \subset V$ which is closed under the action of A.

Example

Let $A = \Bbbk[S_n]$ be the group algebra of S_n and $V = \mathbb{C}^n$ be a vector space where S_n acts by permutations. Then $\text{Span}\{(1, 1, 1, \dots, 1)\}$ is an irreducible subrepresentation.

Let $V = \Bbbk[x]$. The differential operator acts by $\partial_x x^k = kx^{k-1}$. In characteristic 0 we can define the algebra of differential operators as a subalgebra in End(k[x]) generated by x and ∂_x .

Let $V = \mathbb{k}[x]$. The differential operator acts by $\partial_x x^k = kx^{k-1}$. In characteristic 0 we can define the algebra of differential operators as a subalgebra in End(k[x]) generated by x and ∂_x .

But in characteristic p, ∂_x^p acts by 0, this is problematic. So to define $k[x, \partial_x]$, use the fact that $[\partial_x, x] = 1$. So $k[x, \partial_x] = \mathbb{k}\langle x, y \rangle / ([y, x] = 1)$.

Rational Cherednik Algebra of Type A_n

The Cherednik algebra $H_{t,c}(n)$ in characteristic 0 is generated by the following in $\operatorname{End}(\Bbbk[x_1,\ldots,x_n]/(x_1+\cdots+x_n))$:

A B > A B >

The Cherednik algebra $H_{t,c}(n)$ in characteristic 0 is generated by the following in $\operatorname{End}(\Bbbk[x_1,\ldots,x_n]/(x_1+\cdots+x_n))$:

- Polynomials in $\Bbbk[x_1, \ldots, x_n]$
 - Acts by multiplication

The Cherednik algebra $H_{t,c}(n)$ in characteristic 0 is generated by the following in $End(k[x_1, ..., x_n]/(x_1 + \cdots + x_n))$:

- Polynomials in $\Bbbk[x_1, \ldots, x_n]$
 - Acts by multiplication
- Elements of S_n
 - Acts by permuting the x_i's

The Cherednik algebra $H_{t,c}(n)$ in characteristic 0 is generated by the following in $\operatorname{End}(\Bbbk[x_1,\ldots,x_n]/(x_1+\cdots+x_n))$:

- Polynomials in $\Bbbk[x_1, \ldots, x_n]$
 - Acts by multiplication
- Elements of S_n
 - Acts by permuting the x_i's
- The Dunkl operators D_{y_i}
 - An extension of the partial derivative

•
$$D_{y_i} = t\partial_{x_i} - c\sum_{k\neq i} \frac{1-\sigma_{ik}}{x_i-x_k}$$

$$\bullet \ [D_{y_i}, D_{y_j}] = 0$$

The Cherednik algebra $H_{t,c}(n)$ in characteristic 0 is generated by the following in $\text{End}(\Bbbk[x_1, \ldots, x_n]/(x_1 + \cdots + x_n))$:

- Polynomials in $\Bbbk[x_1, \ldots, x_n]$
 - Acts by multiplication
- Elements of S_n
 - Acts by permuting the x_i's
- The Dunkl operators D_{y_i}
 - An extension of the partial derivative

•
$$D_{y_i} = t\partial_{x_i} - c\sum_{k\neq i} \frac{1-\sigma_{ik}}{x_i-x_k}$$

•
$$[D_{y_i}, D_{y_j}] = 0$$

The relevant cases are t = 1 and t = 0. We will work with t = 0. We need more abstract definition for characteristic p as for differential operators. The Dunkl operator can be described by $D_{y_i} = t \partial_{x_i} - c \sum_{k \neq i} \frac{1 - \sigma_{ik}}{x_i - x_k}$.

聞き くぼき くぼき

The Dunkl operator can be described by $D_{y_i} = t \partial_{x_i} - c \sum_{k \neq i} \frac{1 - \sigma_{ik}}{x_i - x_k}$. For t = 1, an example of $D_{y_1}(x_1 x_2^2 x_3^3)$:

伺 ト く ヨ ト く ヨ ト

The Dunkl operator can be described by $D_{y_i} = t \partial_{x_i} - c \sum_{k \neq i} \frac{1 - \sigma_{ik}}{x_i - x_k}$. For t = 1, an example of $D_{y_1}(x_1 x_2^2 x_3^3)$:

•
$$1\partial_{x_1}(x_1x_2^2x_3^3) = x_2^2x_3^3$$

伺 ト く ヨ ト く ヨ ト

The Dunkl operator can be described by $D_{y_i} = t \partial_{x_i} - c \sum_{k \neq i} \frac{1 - \sigma_{ik}}{x_i - x_k}$. For t = 1, an example of $D_{y_1}(x_1 x_2^2 x_3^3)$:

•
$$1\partial_{x_1} \left(x_1 x_2^2 x_3^3 \right) = x_2^2 x_3^3$$

• $\frac{1 - \sigma_{12}}{x_1 - x_2} \left(x_1 x_2^2 x_3^3 \right) = x_3^3 \left(\frac{x_1 x_2^2 - x_1^2 x_2}{x_1 - x_2} \right) = -x_1 x_2 x_3^3$

伺 ト く ヨ ト く ヨ ト

The Dunkl operator can be described by $D_{y_i} = t \partial_{x_i} - c \sum_{k \neq i} \frac{1 - \sigma_{ik}}{x_i - x_k}$. For t = 1, an example of $D_{y_1}(x_1 x_2^2 x_3^3)$:

•
$$1\partial_{x_1} \left(x_1 x_2^2 x_3^3 \right) = x_2^2 x_3^3$$

• $\frac{1 - \sigma_{12}}{x_1 - x_2} \left(x_1 x_2^2 x_3^3 \right) = x_3^3 \left(\frac{x_1 x_2^2 - x_1^2 x_2}{x_1 - x_2} \right) = -x_1 x_2 x_3^3$
• $\frac{1 - \sigma_{13}}{x_1 - x_3} \left(x_1 x_2^2 x_3^3 \right) = x_2^2 \left(\frac{x_1 x_3^3 - x_1^3 x_3}{x_1 - x_3} \right) = -x_1^2 x_2^2 x_3 - x_1 x_2^2 x_3^2$

伺 ト く ヨ ト く ヨ ト

The Dunkl operator can be described by $D_{y_i} = t \partial_{x_i} - c \sum_{k \neq i} \frac{1 - \sigma_{ik}}{x_i - x_k}$. For t = 1, an example of $D_{y_1}(x_1 x_2^2 x_3^3)$:

•
$$1\partial_{x_1} \left(x_1 x_2^2 x_3^3 \right) = x_2^2 x_3^3$$

• $\frac{1 - \sigma_{12}}{x_1 - x_2} \left(x_1 x_2^2 x_3^3 \right) = x_3^3 \left(\frac{x_1 x_2^2 - x_1^2 x_2}{x_1 - x_2} \right) = -x_1 x_2 x_3^3$
• $\frac{1 - \sigma_{13}}{x_1 - x_3} \left(x_1 x_2^2 x_3^3 \right) = x_2^2 \left(\frac{x_1 x_3^3 - x_1^3 x_3}{x_1 - x_3} \right) = -x_1^2 x_2^2 x_3 - x_1 x_2^2 x_3^2$
• For $k > 3$, then $\frac{1 - \sigma_{1k}}{x_1 - x_1} \left(x_1 x_2^2 x_3^3 \right) = x_2^2 x_3^3$

伺 ト イヨト イヨト

The Dunkl operator can be described by $D_{y_i} = t \partial_{x_i} - c \sum_{k \neq i} \frac{1 - \sigma_{ik}}{x_i - x_k}$. For t = 1, an example of $D_{y_1}(x_1 x_2^2 x_3^3)$:

•
$$1\partial_{x_1} (x_1 x_2^2 x_3^3) = x_2^2 x_3^3$$

• $\frac{1-\sigma_{12}}{x_1-x_2} (x_1 x_2^2 x_3^3) = x_3^3 \left(\frac{x_1 x_2^2 - x_1^2 x_2}{x_1 - x_2}\right) = -x_1 x_2 x_3^3$
• $\frac{1-\sigma_{13}}{x_1-x_3} (x_1 x_2^2 x_3^3) = x_2^2 \left(\frac{x_1 x_3^3 - x_1^3 x_3}{x_1 - x_3}\right) = -x_1^2 x_2^2 x_3 - x_1 x_2^2 x_3^2$
• For $k > 3$, then $\frac{1-\sigma_{1k}}{x_1 - x_k} (x_1 x_2^2 x_3^3) = x_2^2 x_3^3$
• $D_{y_1} (x_1 x_2^2 x_3^3) = \partial_{x_1} (x_1 x_2^2 x_3^3) - \sum_{k \neq 1} \frac{1-\sigma_{1k}}{x_1 - x_k} (x_1 x_2^2 x_3^3) = x_2^2 x_3^3$

伺 ト く ヨ ト く ヨ ト

The Dunkl operator can be described by $D_{y_i} = t\partial_{x_i} - c \sum_{k \neq i} \frac{1 - \sigma_{ik}}{x_i - x_k}$. For t = 1, an example of $D_{y_1}(x_1 x_2^2 x_3^3)$:

•
$$1\partial_{x_1} (x_1 x_2^2 x_3^3) = x_2^2 x_3^3$$

• $\frac{1-\sigma_{12}}{x_1-x_2} (x_1 x_2^2 x_3^3) = x_3^3 \left(\frac{x_1 x_2^2 - x_1^2 x_2}{x_1 - x_2}\right) = -x_1 x_2 x_3^3$
• $\frac{1-\sigma_{13}}{x_1-x_3} (x_1 x_2^2 x_3^3) = x_2^2 \left(\frac{x_1 x_3^3 - x_1^3 x_3}{x_1 - x_3}\right) = -x_1^2 x_2^2 x_3 - x_1 x_2^2 x_3^2$
• For $k > 3$, then $\frac{1-\sigma_{1k}}{x_1 - x_k} (x_1 x_2^2 x_3^3) = x_2^2 x_3^3$
• $D_{y_1} (x_1 x_2^2 x_3^3) = \partial_{x_1} (x_1 x_2^2 x_3^3) - \sum_{k \neq 1} \frac{1-\sigma_{1k}}{x_1 - x_k} (x_1 x_2^2 x_3^3) = x_2^2 x_3^3$

The singular polynomials are those which are in the kernel of all Dunkl operators $D_{y_i-y_j}$ for all i, j.

伺 ト く ヨ ト く ヨ ト

• By $M_{t,c}$ denote the Verma module $\mathbb{k}[x_1, \ldots, x_n]/(x_1 + \cdots + x_n)$ with a standard structure of $H_{t,c}(n)$ representation

御 と く ヨ と く ヨ と

- By $M_{t,c}$ denote the Verma module $\mathbb{k}[x_1, \ldots, x_n]/(x_1 + \cdots + x_n)$ with a standard structure of $H_{t,c}(n)$ representation
- Ideal of symmetric polynomials is a subrepresentation

白マ くぼう くぼう

- By $M_{t,c}$ denote the Verma module $\mathbb{k}[x_1, \ldots, x_n]/(x_1 + \cdots + x_n)$ with a standard structure of $H_{t,c}(n)$ representation
- Ideal of symmetric polynomials is a subrepresentation
- Denote by $N_{t,c}$ the quotient by this subrepresentation, which is the baby Verma module

The contravariant form $B : S\mathfrak{h} \otimes S\mathfrak{h}^* \to \Bbbk$ is defined by B(1,1) = 1 and for $y \in \mathfrak{h}, x \in \mathfrak{h}^*, g \in S\mathfrak{h}, f \in S\mathfrak{h}^*$, then $B(yg, f) = B(g, D_y(f))$ and $B(g, xf) = B(D_x(g), f)$. The kernel of B is given by $x \in S\mathfrak{h}^*$ such that for all $y \in S\mathfrak{h}$, then B(y, x) = 0. The contravariant form $B : S\mathfrak{h} \otimes S\mathfrak{h}^* \to \Bbbk$ is defined by B(1,1) = 1 and for $y \in \mathfrak{h}, x \in \mathfrak{h}^*, g \in S\mathfrak{h}, f \in S\mathfrak{h}^*$, then $B(yg, f) = B(g, D_y(f))$ and $B(g, xf) = B(D_x(g), f)$. The kernel of B is given by $x \in S\mathfrak{h}^*$ such that for all $y \in S\mathfrak{h}$, then B(y, x) = 0.

- The kernel is a subrepresentation
- Define $L_{t,c} = M_{t,c} / \text{ker}B$
- $L_{t,c} = N_{t,c}/\mathrm{ker}B$
- L is an irreducible representation of $H_{t,c}$

ヨッ イヨッ イヨッ

To find the Hilbert polynomial of the irreducible quotient $L_{t,c}$ in the polynomial representation of the rational Cherednik algebra of type A_n , when the characteristic $p \nmid n$.

The singular polynomials generate a subrepresentation so we would like to find them and remove them.

To find the smallest d such that degree d polynomials in the simultaneous kernel of the Dunkl operators $D_{y_i-y_j}$ exist, and find the dimension of this kernel.

伺 ト く ヨ ト く ヨ ト

Balagovic and Chen showed that if no singular polynomials existed, the Hilbert polynomial of $N_{t,c}(\tau)$ is as follows:

Balagovic and Chen showed that if no singular polynomials existed, the Hilbert polynomial of $N_{t,c}(\tau)$ is as follows:

$$t = 1 \implies h_{N_{1,c}(\tau)}(z) = rac{\left(1 - z^{2p}
ight)\left(1 - z^{3p}
ight)\cdots\left(1 - z^{np}
ight)}{(1 - z)^{n-1}},$$

Balagovic and Chen showed that if no singular polynomials existed, the Hilbert polynomial of $N_{t,c}(\tau)$ is as follows:

$$t = 1 \implies h_{N_{1,c}(\tau)}(z) = \frac{\left(1 - z^{2p}\right)\left(1 - z^{3p}\right)\cdots\left(1 - z^{np}\right)}{(1 - z)^{n-1}},$$
$$t = 0 \implies h_{N_{0,c}(\tau)}(z) = \frac{\left(1 - z^2\right)\left(1 - z^3\right)\cdots\left(1 - z^n\right)}{(1 - z)^{n-1}}.$$

 $(1-z)^{n-1}$

Balagovic and Chen showed that if no singular polynomials existed, the Hilbert polynomial of $N_{t,c}(\tau)$ is as follows:

$$t = 1 \implies h_{N_{1,c}(\tau)}(z) = \frac{(1-z^{2p})(1-z^{3p})\cdots(1-z^{np})}{(1-z)^{n-1}},$$

$$t = 0 \implies h_{N_{0,c}(\tau)}(z) = rac{\left(1-z^2
ight)\left(1-z^3
ight)\cdots\left(1-z^n
ight)}{(1-z)^{n-1}}.$$

They showed that

$$h_{L_{t,c}(\tau)}(z) = \left(\frac{1-z^p}{1-z}\right)^{n-1} h(z^p)$$

for some polynomial h with integer coefficients.

Balagovic and Chen showed that if no singular polynomials existed, the Hilbert polynomial of $N_{t,c}(\tau)$ is as follows:

$$t = 1 \implies h_{N_{1,c}(\tau)}(z) = \frac{(1-z^{2p})(1-z^{3p})\cdots(1-z^{np})}{(1-z)^{n-1}},$$

$$t = 0 \implies h_{N_{0,c}(\tau)}(z) = \frac{(1-z^2)(1-z^3)\cdots(1-z^n)}{(1-z)^{n-1}}.$$

They showed that

$$h_{L_{t,c}(\tau)}(z) = \left(\frac{1-z^p}{1-z}\right)^{n-1} h(z^p)$$

for some polynomial h with integer coefficients.

They also proved that ker*B* is a maximal proper submodule of the Verma module $M_{t,c}(\tau)$, and that $L_{t,c}(\tau)$ is irreducible.

• We wrote a program in Sage to compute the dimensions of the subspaces for various *p*, *n* in *L*_{*t*,*c*}

同 ト イ ヨ ト イ ヨ ト

- We wrote a program in Sage to compute the dimensions of the subspaces for various *p*, *n* in *L*_{*t*,*c*}
- We compared the dimension to those predicted by Balagovic/Chen for $N_{t,c}$ to find existence of singular polynomials

同 ト イ ヨ ト イ ヨ ト

- We wrote a program in Sage to compute the dimensions of the subspaces for various *p*, *n* in *L*_{*t*,*c*}
- We compared the dimension to those predicted by Balagovic/Chen for $N_{t,c}$ to find existence of singular polynomials
- We computed these singular polynomials

- We wrote a program in Sage to compute the dimensions of the subspaces for various *p*, *n* in *L*_{*t*,*c*}
- We compared the dimension to those predicted by Balagovic/Chen for $N_{t,c}$ to find existence of singular polynomials
- We computed these singular polynomials
- We conjectured a pattern and looked to prove it

For p|n:

- The singular polynomials are x_i for i = 1, 2, ..., n
- The Hilbert polynomial is 1

伺 ト く ヨ ト く ヨ ト

For p|n:

- The singular polynomials are x_i for i = 1, 2, ..., n
- The Hilbert polynomial is 1

The case t = 1 and p|n was done by Devadas and Sun.

- For p = 2, the following polynomials are singular for distinct i, j, k:
 x_i² + x_ix_j + x_j²
 - $x_i x_j + x_j x_k + x_k x_i$

- ₹ 🖹 🕨

For p odd and distinct i, j, k, l, the following polynomials are singular:

•
$$(x_j + x_k)(x_i - x_j - x_k)$$

•
$$(x_i - x_j)(x_k - x_l)$$

伺 と く ヨ と く ヨ と

- The Hilbert polynomial for p = 2 and t = 0 is $h_{L_{0,c}}(z) = 1 + (n-1)z + (n-1)z^2 + z^3$
- Etingof conjectures that for n = kp + r, then $h_{L_{0,c}}(z) = [r]_z! [p]_z Q_r(n, z)$ and $h_{L_{1,c}}(z) = [r]_{z^p} ! [p]_{z^p} [p]_z^{n-1} Q_r(n, z^p)$, for $Q_r(n, z) = {n-1 \choose r-1} z^{r+1} + \sum_{i=0}^r {n-r-2+i \choose i} z^i$, $[k]_z! = [k]_z [k-1]_z \cdots [1]_z$, and $[w]_z = \frac{1-z^w}{1-z}$

伺い イラト イラト

In the future, we would like to find the Hilbert polynomials for $L_{t,c}$, and the singular polynomials for various p, n. We would like to study more cases in t = 0 and prove irreducibility, then consider the connection between t = 0 and t = 1.

I would like to thank:

- My parents
- My mentor, Daniil Kalinov
- Dr. Pavel Etingof
- Dr. Tanya Khovanova
- The MIT Math Department
- The MIT PRIMES program
- Sheela Devadas, Yi Sun, Martina Balagovic, Harrison Chen